Low Emissions Diesel Engines from International
Our Approach for Modern Transportation and Environmental Benefits

by
Rodica A. Baranescu
International Truck and Engine Corporation

ERC-2005 Symposium, Madison, WI June 8-9, 2005
International’s legacy

• Major diesel engine manufacturer
• Main product focus: medium displacement (6-10 l)
• Currently expanding product line
 Small displacement HS 2.5 l; 2.8 l
 NGD 3l
 Medium displacement V6 4.5 l; V8 6.0 l
 I 6 7.6 l; 9.3 l
 Large displacement 11 l -13 l
International’s Commitment to Low Emission Diesels

- In 1989 demonstrated 1994 Compliant Smokeless Diesel
- In 1996 demonstrated 2004 Compliant Diesel

- In 1999 demonstrated Green Diesel School Bus with lower PM and HC emissions than CNG

- In 2001 certified GDT Diesel Engine at 2010 PM and HC levels

- In 2003 made technology path decisions for 2007
Progress In Reducing HD Truck PM Emissions

Year	Particulates (g/bhp-hr)
1988 | 1.0
1991 | 0.6
1994 | 0.4
Urban Bus 1996 | 0.2
2007 | 0.0
Progress In Reducing HD Truck NOx Emissions

Industry Reductions

<table>
<thead>
<tr>
<th>Model Year</th>
<th>NOx (g/bhp-hr)</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>15 NOx</td>
<td>BASE</td>
</tr>
<tr>
<td>1990</td>
<td>6 NOx</td>
<td>60%</td>
</tr>
<tr>
<td>1991</td>
<td>5 NOx</td>
<td>67%</td>
</tr>
<tr>
<td>1998</td>
<td>4 NOx</td>
<td>73%</td>
</tr>
<tr>
<td>2004</td>
<td>2 NOx</td>
<td>87%</td>
</tr>
<tr>
<td>2007</td>
<td>0.2 NOx</td>
<td>99%</td>
</tr>
</tbody>
</table>
Diesel Technology: An Evolutionary Path to Near Zero Emissions

- 2002
 - Advanced Injection System
 - Advanced Turbocharging
 - Advanced Combustion
 - Advanced Electronics
 - Particulate Filter

- 2004
 - 4 Valve Head
 - Vertical Injector
 - G2 Injection System
 - Electronic Pilot
 - Electronic Trim
 - Higher Peak Pressure
 - Advanced Turbo
 - Cooled EGR
 - Oxidation Catalyst

- 2007
 - Advanced NOx Adsorber
 - Advanced Particulate Trap

- 2010
 - Advanced NOx Adsorber
 - Advanced Particulate Trap
Current Technology Path

The 2004 emission standards were pulled ahead in October 2002

- Additional stringencies
 - Compliance ranges widened
 - NTE limits (flatter emission maps)

- Preferred technology includes use of EGR and continued enhancements of basic combustion processes
Challenges Ahead – 2007 Standards

• Significant emission reduction (NOx and PM)
• Requires System Approach
 – Engine/ exhaust system/ fuel
• Use of 2007 technology requires ultra-low-sulfur fuel
Challenges Ahead – 2007 Standards

• Approach: EGR, DPF, DOC
• Technology can be applied to all engines:
 – Heavy-duty trucks, buses
 – Light-duty vehicles
• 2007 technology is an evolution of the 2004 technology
• Some 2007 technology is available today
Fuel Issues-Commercial Transportation

• Fuel issues - global economy implications
 – New technology introduction worldwide
 - Globalization of environmental emission standards
 - Fuel characteristics harmonization

• World Wide Fuel Charter- a framework for fuel evolution and harmonization; developed jointly by:
 – Alliance, EMA
 – ACEA
 – JAMA
World Wide Fuel Charter

• Recognizes technological differences worldwide
 – Four categories of diesel fuels: I;II;III;IV

• Provides a road map for strategic fuel development
 – (critical elements)
 • Sulfur, cetane number, alternative blends

• It is a living document; it faces challenges
Diesel Fuel Quality - What have we achieved?

- **ULSF** - the “technology enabler” for 2007 emission standards – on its way!
 - By June 2006, over 80% of on-road diesel fuel will have less than 15 ppm Sulfur!
 - By 2010, all on-road diesel fuel will be ULS
 - In 2010-2014, off-road diesel fuel will be ULS

- Performance of catalytic systems will be maximized (new technology)

- Particulate reduction benefits for all vehicles (new and old)
Lubricity?

• Lubricity has become a requirement for diesel fuel (included in standard)
• Is the current specification good enough for 2007 Advanced Fuel Injection System?
• Will ULSF have adequate lubricity?
 – Some concerns with early ULSF in the market
Trend of Diesel Fuel Lubricity

Source: Infineum Worldwide Winter Diesel Fuel Quality Survey 2002
Diesel Fuel Quality- Where do we fall short?

• Performance and Sociability Characteristics of Diesel Engine:
 – ease of start; noise,
 – white smoke; odor

• Influenced by diesel fuel properties:
 – Cetane Number
 – Low Temperature Operability

• Affect all diesels but especially, buses, diesel cars, pickup trucks, SUVs
Cetane Number- CN

• ASTM D 975 specifies CN of 40 min.
• This value has not changed since first standard issue!
• Diesel engine technology has changed!
• Market surveys show that average CN is higher!
• Isn’t it time to change CN?
Worldwide Trend of Cetane Number

Average Cetane Number Split by Region

Source: Infineum Worldwide Winter Diesel Fuel Quality Survey 2002
Premium Diesel Fuel

 – Cetane Number (47 minimum)
 – Low Temperature Operability
 – Thermal Stability
 – Lubricity (520 HFRR)
• This specification would give customers a choice for a better diesel fuel
• Would enhance the performance of new diesel vehicles in the market and demonstrate the real potential of advanced diesel technology.
Other Diesel Fuel Issues

• Low temperature operability

• Stability (as sulfur is removed)

• Energy content

• Cleanliness (water and impurities)
Lubricants Issues

• New generation of lubricants - PC-10 Category is under very active development in US
 – Compatible with the 2007 engine technology

• Industry-wide effort that includes:
 – Trade associations
 – Independent test laboratories
 – Corporate laboratories

• Complex process development with large participation, cost sharing and aggressive test schedule, to provide timely introduction of PC-10 lubricants by mid-2006
Lubricants Issues-(cont’d)

• **Challenges:**
 – Provide equal or better performance of oils, while protecting after treatment systems
 – Maintain or improve oil drain intervals

• **Chemical limits for :**
 – Sulfated ash (1.0% max)
 – Phosphorus (0.12% max)
 – Sulfur (0.4% max)

• **Development of new additives**
Alternative Fuels

• Biodiesel
• Natural Gas
• Synthetic Diesel (FT fuel/GTL fuel)
• Alcohols (methanol, ethanol)
• Dimethylether (DME)
• Blends (diesel/water, diesel/alcohol)
Alternative Fuels - Relevance

• Driving forces
 – Lower emissions (some pollutants)
 – Domestic resources, less dependence on imports
 – Long term potential when crude oil is depleted
Alternative Fuels- Challenges

- Availability,
- Infrastructure
- Technology maturity
- Cost
- Fuel quality, specifications
- Emissions?
Future Engines; their Fuel Requirements

- Hybrid (IC/Electric) powertrain
 - Increased performance and efficiency
 - Lower emissions
 - Same fuel requirements

- Hybrid combustion (HCCI)
 - Fuel Characteristics?

- Fuel Cells
 - Hydrogen fuel energy system
 - Fuel production and distribution
 - On-board storage
 - Fuel usage (engines, cells, etc.)
 - Applications
Conclusions

• Fuels and compatible lubricants are an “enabling technology” for the development of low emissions engines:
 (both traditional and new concepts)
Conclusions

• Fuels and lubricants formulations will maximize the potential of high performance engines with benefits in:
 – Environmental impact (emissions and greenhouse gases)
 – Fuel efficiency (better use of resources)
 – Customer acceptance

• The conventional fuels will continue to support transportation (as long as they can be produced economically from existing resources)
Low-Emitting Diesel Engines from International

- Equivalent or better emissions than gasoline or alternative fuels
- Still more fuel efficient with lower greenhouse gas emissions
- Performance and reliability that customers depend on
Conclusion

• Diesels from International will continue to be an environmental solution

• 2007 diesels will change the way people see diesel engines