Fundamental Considerations of Fuel Cells for Mobility Applications

David E. Foster
Engine Research Center
University of Wisconsin - Madison

Future Engines and Their Fuels
ERC 2011 Symposium
June 9, 2011
Motivation

• Reducing the fuel consumptions of our mobility systems is of paramount importance

• Necessitates a fundamental evaluation of what are the practical limits of efficiency for our mobility systems
 – This has been an active area within the ERC with a focus on IC Engines

• Need to supply a similar, fundamental analysis of practical limits to other candidate power plants and fuels
 – Fuels Cells
Acknowledgements

• Professor Mark Linne, Professor and CERC Director, Applied Mechanics, Combustion, Chalmers University of Technology

Maximum Theoretical Work from a Thermodynamic Process

\[W_{\text{max}} = -\Delta G \]

- IC Engines and Fuel Cells are similar energy converters
 - Both convert the “chemical” internal energy in the fuel into work and exhaust the spent fuel and oxidizer (products)
- Both are governed by the same thermodynamic relationship for maximum theoretical work
 - Both are chemical engines in which the energy transformation is accomplished via a chemical reaction in a thermodynamic process
Differences Between IC Engines and Fuel Cells

- **IC Engine**
 - The energy conversion of the fuel is accomplished via a chemical reaction
 - The charge transfer occurs directly between two chemical species without the liberation of free electrons

- **Fuel Cell**
 - The energy conversion of the fuel is accomplished via an electrochemical reaction
 - The charge transfer of the reaction is physically separated and takes place between electrodes and the respective chemical species
Implications of this on the Thermodynamic Analysis

• **IC Engine**

\[W_{\text{max}} = -\Delta G_{\text{rxn}} \]

\[W_{\text{max}} = -(H_{\text{prod}} - H_{\text{react}}) + T_0(S_{\text{prod}} - S_{\text{react}}) = Q_{HV} + T_0(S_{\text{prod}} - S_{\text{react}}) \]

• **Fuel Cell**

\[W_{\text{elect}} = nFE = -\Delta G_{\text{rxn}} \]

where: \(n \) = number of moles of electrons

\(F \) = Faraday's constant

\(E \) = potential difference
Simple Fuel Cell Example

At standard temperature and pressure consider:

\[H_2 + \frac{1}{2} O_2 \rightleftharpoons H_2O \]

\[\Delta G := -237 \cdot 10^3 \frac{J}{\text{mole}} \quad \text{n} := 2 \quad \text{Faraday} := \left(96485.3383 \frac{\text{coul}}{\text{mole}}\right) \]

\[E := \frac{-\Delta G}{n \cdot \text{Faraday}} \quad \text{E} = 1.228 \text{volt} \]

To obtain higher voltages one uses a stack of many individual cells.
Further Development of the Fuel Cell
Maximum Work Expression

• Nernst Equation

\[W_{\text{elect}} = nF \varepsilon = - \Delta G_{\text{rxn}} \]

\[E = - \frac{\Delta G_{\text{rxn}}}{nF} \]

realize: \(E = f(T, P, \mu_i) \)

with: \(\mu_i = \mu_0(P_o, T) + RT \ln a_i \)

where: \(a_i = \text{activity} = \frac{f_i}{f_i^o} = \frac{P_i}{P_o} \) (ideal gas)

\[E = E^o - \frac{RT}{nF} \ln \frac{\Pi a_i^{\nu_i}_{\text{products}}}{\Pi a_i^{\nu_i}_{\text{reactants}}} \]

\(E^o \) = Standard state reversible voltage
Electrochemistry Includes Movement in a Potential Field

\[\tilde{\mu} = \mu_i + z_i F \phi_i = \mu_i^0 + RT \ln a_i + z_i F \phi_i \]

with: \(z_i \) = charge number, \(F \) = Faraday's constant, \(\phi_i \) = electrical potential experiences by species \(i \)

- Now we must also consider electrical potential with the chemical potential – electrochemical potential
- There is a change in the electrochemical potential experienced by the electrons as they move from the anode to the cathode (a source of entropy generation)
Practical Fuel Cell Efficiency

• Need to account for:
 – Voltage losses
 • Chemical activation losses
 • Ohmic losses
 • Mass transport – diffusive (concentration) losses
 – Fuel Utilization losses
 • Accounting for the fact that not all of the fuel provided to the fuel cell participates in the electrochemical reaction

• This performance is given in current-voltage curves
Current – Voltage Curve

Electrochemical Processes are Heterogeneous

Steps in an Electrochemical Reaction:

1. Mass transport to the electrode
2. Absorption of the H_2 onto the electrode surface
3. Separation of H_2 into two chemisorbed H atoms on electrode surface
4. Transfer of electrons of chemisorbed H atoms to electrode – releasing H^+
5. Mass transport of H^+ away from the electrode

Schematic of Electrochemical Process

Chemical Activation Losses

- Electrochemical reactions take place at an interface between the electrode and electrolyte.
- Current density is a more fundamental metric than current – which then causes a focus on per-unit-area reaction rates.
- Reaction rate is determined by the activation energy (barrier).
- In electrochemical reactions the activation energy can be manipulated by varying the cell potential:
 - The free energy of a charged species is sensitive to voltage – changing the voltage of the cell changes the size of the activation barrier.
- The current produced with a fuel cell increases exponentially with activation overvoltage (voltage which is sacrificed to overcome the activation barrier).
 - We sacrifice part of the thermodynamically available cell voltage to produce a net current.
- Activation overvoltage occurs at both the anode and cathode.
Schematic of Activation Losses

Activation losses from H$_2$ – O$_2$ fuel cell anode versus cathode

Relationship between the current density output and the activation overvoltage is exponential and is know as the Bulter – Volmer equation.
Minimizing Activation Overvoltage Losses

1. Increase reactant concentration
 - Has an impact on cell voltage – Nernst Eq.
2. Increase reaction temperature
 - Nernst Eq. - this slightly reduces voltage
3. Decrease activation barrier – catalyst
4. Increase the number of reaction sites (high surface area electrodes)
Ohmic Losses (Charge Transport)

- Accumulation/depletion of electrons at the two electrodes creates a voltage gradient which drives the transport of the electrons.

- In the electrolyte the accumulation/depletion of protons creates both a voltage gradient and a concentration gradient which drives the transport of the protons from the anode to the cathode.

Charge Flux = $\sigma \frac{dV}{dx}$; σ = conductivity, V = voltage

Ohmic Losses

- Charge transport contributes to a linear decrease in operating voltage
- Ionic charge transport tends to be more difficult than electronic charge transport – ionic transport resistance dominates
- Fuel cell resistance scales with electrolyte thickness
- Resistances within the fuel cell are additive

\[\eta_{\text{ohmic}} = iR_{\text{ohmic}} = i(R_{\text{elect}} + R_{\text{ionic}}) \]

Ohmic Losses Summary

• Voltage that is expended to drive conductive charge transport is a loss
 – Ohms law
• Resistance is dominated by ionic charge transport
 – Thickness is an important parameter
• Electrolyte choice is very important
 – Liquid
 – Polymer
 – Ceramic
Mass Transport

- Mass transport governs supply and removal of reactants and products
- Mass transport to the fuel cell electrodes is typically dominated by diffusion
 - Diffusive transport limitations in the electrode lead to a limiting current density (reactant concentration falls to zero at the fuel cell catalyst layer)
 - Reactant depletion affects both the Nernstian cell voltage and the kinetic reaction rate
- Mass transport in fuel cell flow structures is typically dominated by convection
 - Viscosity and pressure drop (design) impact these losses

Mass Transport Couples with the Nernst Equation

- Electrochemical reaction drives diffusion by reducing the concentration of the reactant at the electrode surface
 - Concentration depletion at the surface reduces the voltage – Nernst Eq
 - Reactant concentration at the catalyst surface decreases, and product concentration at the catalyst surface increases, relative to bulk concentration – increases activation losses (not included in the figure)

Summary of Thermodynamic Losses in a Fuel Cell

\[V = E_{\text{thermo}} - \eta_{\text{act}} - \eta_{\text{ohmic}} - \eta_{\text{conc}} \]
Performance Summary

- The performance curve given for a particular fuel cell is the result of unavoidable losses

Efficiency at Peak Power

• Efficiency at peak power ~ 48%
• Does not include conversion of electricity to rotational motion
Closing Comments

Fuel Cell Thermodynamic Challenges
• Raising the efficiency at high load
• Issues to be addressed:
 – Voltage losses - (thermodynamically associated with power generation), Ohmic losses, and Diffusive losses
• High load efficiency is inferior to IC Engine

IC Engine Thermodynamic Challenges
• Raising efficiency at low load
• Issues to be addressed
 – Pumping work, Combustion gas γ control (temperature and composition), exhaust energy
• Low load efficiency is inferior to Fuel Cell
 – Hybridization, etc

University of Wisconsin -- Engine Research Center
Social or External Constraints

• Cost
• Perceived Utility (mobility paradigm):
 – Range, performance, availability of an acceptable energy carrier, local emission signature, noise, convenience of use…..
• Life cycle ecological footprint
• Etc. (how easily they connect with iCloud).
Thank you very much

http://www.erc.wisc.edu/